翻訳と辞書 |
Pettis theorem : ウィキペディア英語版 | Weakly measurable function In mathematics — specifically, in functional analysis — a weakly measurable function taking values in a Banach space is a function whose composition with any element of the dual space is a measurable function in the usual (strong) sense. For separable spaces, the notions of weak and strong measurability agree. ==Definition==
If (''X'', Σ) is a measurable space and ''B'' is a Banach space over a field K (usually the real numbers R or complex numbers C), then ''f'' : ''X'' → ''B'' is said to be weakly measurable if, for every continuous linear functional ''g'' : ''B'' → K, the function : is a measurable function with respect to Σ and the usual Borel ''σ''-algebra on K.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Weakly measurable function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|